spateo.plotting.static.glm¶
Functions¶
|
Plot the glm_degs result in a scatterplot. |
|
Plot the glm_degs result in a heatmap. |
Module Contents¶
- spateo.plotting.static.glm.glm_fit(adata: anndata.AnnData, genes: str | list | None = None, feature_x: str = None, feature_y: str = 'expression', glm_key: str = 'glm_degs', remove_zero: bool = False, color_key: str | None = None, color_key_cmap: str | None = 'vlag', point_size: float = 14, point_color: str | numpy.ndarray | list = 'skyblue', line_size: float = 2, line_color: str = 'black', ax_size: tuple | list = (6, 4), background_color: str = 'white', ncols: int = 4, show_point: bool = True, show_line: bool = True, show_legend: bool = True, save_show_or_return: Literal['save', 'show', 'return', 'both', 'all'] = 'show', save_kwargs: dict | None = None, **kwargs)[source]¶
Plot the glm_degs result in a scatterplot.
- Parameters:
- adata
An Anndata object contain glm_degs result in
.uns[glm_key]
.- genes
A gene name or a list of genes that will be used to plot.
- feature_x
The key in
.uns[glm_key]['correlation'][gene]
that corresponds to the independent variables, such as'torsion'
, etc.- feature_y
The key in
.uns[glm_key]['correlation'][gene]
that corresponds to the dependent variables, such as'expression'
, etc.- glm_key
The key in
.uns
that corresponds to the glm_degs result.- remove_zero
Whether to remove the data equal to 0 saved in
.uns[glm_key]['correlation'][gene][feature_y]
.- color_key
This can either be an explicit dict mapping labels to colors (as strings of form ‘#RRGGBB’), or an array like object providing one color for each distinct category being provided in labels.
- color_key_cmap
The name of a matplotlib colormap to use for categorical coloring.
- point_size
The scale of the feature_y point size.
- point_color
The color of the feature_y point.
- line_size
The scale of the fitted line width.
- line_color
The color of the fitted line.
- ax_size
The width and height of each ax.
- background_color
The background color of the figure.
- ncols
Number of columns for the figure.
- show_point
Whether to show the scatter plot.
- show_line
Whether to show the line plot.
- show_legend
Whether to show the legend.
- save_show_or_return
If
'both'
, it will save and plot the figure at the same time.If
'all'
, the figure will be saved, displayed and the associated axis and other object will be return.- save_kwargs
A dictionary that will be passed to the save_fig function.
By default, it is an empty dictionary and the save_fig function will use the
{"path": None, "prefix": 'scatter', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True}
as its parameters.Otherwise, you can provide a dictionary that properly modify those keys according to your needs.
- **kwargs
Additional parameters that will be passed into the
seaborn.scatterplot
function.
- spateo.plotting.static.glm.glm_heatmap(adata: anndata.AnnData, genes: str | list | None = None, feature_x: str = None, feature_y: str = 'expression', glm_key: str = 'glm_degs', lowess_smooth: bool = True, frac: float = 0.2, robust: bool = True, colormap: str = 'vlag', figsize: tuple = (6, 6), background_color: str = 'white', show_legend: bool = True, save_show_or_return: Literal['save', 'show', 'return', 'both', 'all'] = 'show', save_kwargs: dict | None = None, **kwargs)[source]¶
Plot the glm_degs result in a heatmap.
- Parameters:
- adata
An Anndata object contain glm_degs result in
.uns[glm_key]
.- genes
A gene name or a list of genes that will be used to plot.
- feature_x
The key in
.uns[glm_key]['correlation'][gene]
that corresponds to the independent variables, such as'torsion'
, etc.- feature_y
The key in
.uns[glm_key]['correlation'][gene]
that corresponds to the dependent variables, such as'expression'
, etc.- glm_key
The key in
.uns
that corresponds to the glm_degs result.- lowess_smooth
If True, use statsmodels to estimate a nonparametric lowess model (locally weighted linear regression).
- frac
Between 0 and 1. The fraction of the data used when estimating each y-value.
- robust
If True and vmin or vmax are absent, the colormap range is computed with robust quantiles instead of the extreme values.
- colormap
The name of a matplotlib colormap.
- figsize
The width and height of figure.
- background_color
The background color of the figure.
- show_legend
Whether to show the legend.
- save_show_or_return
If
'both'
, it will save and plot the figure at the same time.If
'all'
, the figure will be saved, displayed and the associated axis and other object will be return.- save_kwargs
A dictionary that will be passed to the save_fig function.
By default, it is an empty dictionary and the save_fig function will use the
{"path": None, "prefix": 'scatter', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True}
as its parameters.Otherwise, you can provide a dictionary that properly modify those keys according to your needs.
- **kwargs
Additional parameters that will be passed into the
seaborn.heatmap
function.