spateo.external.STAGATE_pyG.gat_conv¶
Classes¶
Module Contents¶
- class spateo.external.STAGATE_pyG.gat_conv.GATConv(in_channels: int | Tuple[int, int], out_channels: int, heads: int = 1, concat: bool = True, negative_slope: float = 0.2, dropout: float = 0.0, add_self_loops: bool = True, bias: bool = True, **kwargs)[source]¶
Bases:
torch_geometric.nn.conv.MessagePassing
The graph attentional operator from the “Graph Attention Networks” paper
\[\mathbf{x}^{\prime}_i = \alpha_{i,i}\mathbf{\Theta}\mathbf{x}_{i} + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j}\mathbf{\Theta}\mathbf{x}_{j},\]where the attention coefficients \(\alpha_{i,j}\) are computed as
\[\alpha_{i,j} = \frac{ \exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}^{\top} [\mathbf{\Theta}\mathbf{x}_i \, \Vert \, \mathbf{\Theta}\mathbf{x}_j] \right)\right)} {\sum_{k \in \mathcal{N}(i) \cup \{ i \}} \exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}^{\top} [\mathbf{\Theta}\mathbf{x}_i \, \Vert \, \mathbf{\Theta}\mathbf{x}_k] \right)\right)}.\]- Parameters:
- in_channels int or tuple
Size of each input sample, or
-1
to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.- out_channels int
Size of each output sample.
- heads int, optional
Number of multi-head-attentions. (default:
1
)- concat bool, optional
If set to
False
, the multi-head attentions are averaged instead of concatenated. (default:True
)- negative_slope float, optional
LeakyReLU angle of the negative slope. (default:
0.2
)- dropout float, optional
Dropout probability of the normalized attention coefficients which exposes each node to a stochastically sampled neighborhood during training. (default:
0
)- add_self_loops bool, optional
If set to
False
, will not add self-loops to the input graph. (default:True
)- bias bool, optional
If set to
False
, the layer will not learn an additive bias. (default:True
)- **kwargs optional
Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x: torch.Tensor | torch_geometric.typing.OptPairTensor, edge_index: torch_geometric.typing.Adj, size: torch_geometric.typing.Size = None, return_attention_weights=None, attention=True, tied_attention=None)[source]¶