spateo.tdr.interpolations.interpolation_dl ========================================== .. py:module:: spateo.tdr.interpolations.interpolation_dl Functions --------- .. autoapisummary:: spateo.tdr.interpolations.interpolation_dl.deep_intepretation Module Contents --------------- .. py:function:: deep_intepretation(source_adata: anndata.AnnData, target_points: Optional[numpy.ndarray] = None, keys: Union[str, list] = None, spatial_key: str = 'spatial', layer: str = 'X', max_iter: int = 1000, data_batch_size: int = 2000, autoencoder_batch_size: int = 50, data_lr: float = 0.0001, autoencoder_lr: float = 0.0001, **kwargs) -> anndata.AnnData Learn a continuous mapping from space to gene expression pattern with the deep neural net model. :param source_adata: AnnData object that contains spatial (numpy.ndarray) in the `obsm` attribute. :param target_points: The spatial coordinates of new data point. If target_coords is None, generate new points based on grid_num. :param keys: Gene list or info list in the `obs` attribute whose interpolate expression across space needs to learned. :param spatial_key: The key in ``.obsm`` that corresponds to the spatial coordinate of each bucket. :param layer: If ``'X'``, uses ``.X``, otherwise uses the representation given by ``.layers[layer]``. :param max_iter: The maximum iteration the network will be trained. :param data_batch_size: The size of the data sample batches to be generated in each iteration. :param autoencoder_batch_size: The size of the auto-encoder training batches to be generated in each iteration. Must be no greater than batch_size. . :param data_lr: The learning rate for network training. :param autoencoder_lr: The learning rate for network training the auto-encoder. Will have no effect if network_dim equal data_dim. :param \*\*kwargs: Additional parameters that will be passed to the training step of the deep neural net. :returns: an anndata object that has interpolated expression. :rtype: interp_adata